POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name GUI Programming [S1MNT1>D-PAO]

Course			
Field of study Mathematics of Modern Technolog	jies	Year/Semester 2/4	
Area of study (specialization)		Profile of study general academic	;
Level of study first-cycle		Course offered in Polish	
Form of study full-time		Requirements elective	
Number of hours			
Lecture 15	Laboratory classe 30		Other (e.g. online) 0
Tutorials 0	Projects/seminar 15	5	
Number of credit points 4,00			
Coordinators		Lecturers	
dr Grzegorz Oleksik grzegorz.oleksik@put.poznan.pl			

Prerequisites

Knowledge and skills from the courses Information Technology I and II, Introduction to programming and Programming with elements of machine learning. The ability to effectively self-educate. Knowing the limitations of one's own knowledge and understanding the need for further education.

Course objective

The course aims at mastering the basic knowledge and skills in the field of programming GUI by the student using the Python language as an example.

Course-related learning outcomes

Knowledge:

• knows and understands at least one programming language or programming environment or software package [K_W07(P6S_WG)];

• knows and understands there lation ship between mathematics and modern technologies [K_W05(P6S_WG)]; • knows and understands selected areas of mathematics to an advanced degree and has detailed knowledge of the applications of mathematical methods and tools in engineering and technical sciences [K_W09(P6S_WG)]. Skills:

• is able to construct an algorithm for solving a simple engineering task and to implement and test it in a selected programming environment [K_U04(P6S_UW)];

• canapplymoderntechnologiestosolvemathematicalandengineering-technicalproblems[K_U05(P6S_UW)];

• can use mathematical tools to support and develop modern technologies used in engineering and technical sciences [K_U06(P6S_UW)];

• is able to operate devices, tools, etc. in accordance with general requirements and technical documentation; knows how to apply the rules of occupational health and safety [K_U11(P6S_UW)];

• can work individually and in a team and interact with other people; is able to estimate the time needed to complete the assigned task; is able to develop and implement a work schedule that ensures meeting the deadline. [K_U17(P6S_UU)];

• can independently plan and implement self-education in order to improve and update their competences [K_U17(P6S_UU)].

Social competences:

• is ready to critically assess the level of his/her knowledge in relation to research in exact and natural sciences as well as engineering and technical sciences [K_K01(P6S_KK)];

• is ready to deepen and expand knowledge to solve emerging technical problems [K_K02(P6S_KK)].

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lectures: knowledge is verified on a written test;

Laboratory classes: knowledge and skills are verified on the basis of the evaluation of the programming colloquium;

Projects/seminars: knowledge and skills are verified based on the assessment of project implementation, its functionality and goals;

Grading scale: 0%-49% - NDST, 50%-59% - DST, 60%-69% - DST+, 70%-79% - DB, 80%-89% - DB+, 90%-100%-BD.

Programme content

introduction to object-oriented programming, regardless of the specific language programming

- data encapsulation
- Inheritance
- polymorphism
- special methods
- decorators
- selected graphical user interfaces
- design patterns

Course topics

Lectures:

- introduction to object-oriented programming (regardless of the specific programming language);
- introduction to object-oriented programming in Python;
- data protection: encapsulation and access modifiers;
- introduction to UML diagrams;
- working with an object: creation, initialization, deletion;
- the issue of inheritance and the concept of polymorphism;
- classes and abstract methods;
- basics of GUI development: tkinter;
- selected GUI development packages: PyGUI, PyQt5,
- exception Handling;
- design patterns (MVC, Strategy)

- creating your own classes with methods basics
- creating parents and child classes
- creating classes with special methods
- using decorators in class methods
- creating your own GUI using libraries (tkinter, PyGui)
- using design patterns (MVC, Strategy)

Teaching methods

Lectures: multimedia presentation, presentation illustrated with examples given on the board, problem solving, multimedia show, demonstration;

Laboratory classes: solving practical problems, discussion, individual or team work;

Projects/seminars: multimedia presentation, discussion, individual or team work, solving practical problems. On the eKursy platform, studies on classes are posted, which can be downloaded by the student.

Bibliography

Basic:

- Lutz, M., Python. Wprowadzenie, Helion, najnowsze wydanie;
- Steven F. Lott, Dusty Phillips: Programowanie zorientowane obiektowo w Pythonie. Helion 2023;

• Irv Kalb: Python zorientowany obiektowo. Programowanie gier i graficznych interfejsów użytkownika, Helion 2022.

Additional:

• Nathan Metzler: Python GUI Programming with PyQt: A Beginner's Guide to Python 3 and GUI Application Development, Independly Published 2019;

- Eric, M., Python. Instrukcje dla Programisty, Helion, najnowsze wydanie;
- http://wazniak.mimuw.edu.pl/index.php?title=Programowanie_obiektowe;
- https://analityk.edu.pl/programowanie-obiektowe-w-python/;
- https://www.tutorialspoint.com/python/python_gui_programming.htm

Breakdown of average student's workload

	Hours	ECTS
Total workload	100	4,00
Classes requiring direct contact with the teacher	60	2,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	40	1,50